Project tutorial
Simple 2-axis Servo Robotic Arm controlled by MPU-6050

Simple 2-axis Servo Robotic Arm controlled by MPU-6050 © CC BY

An easy and interesting project in which you use a MPU6050 (Accelerometer + Gyro) sensor module to control a simple 2-axis Servo Robotic Arm

  • 6,015 views
  • 0 comments
  • 13 respects

Components and supplies

Ph a000067 iso (1) wzec989qrf
Arduino Mega 2560
You could use any Arduino microcontroller board. If you are using an Arduino Uno or Nano, please make sure to use an external power supply.
×1
 dsc1042 450x300
DFRobot 6 DOF Sensor - MPU6050
×1
Sg90 servo motor 180 degrees sg90 micro
SG90 Micro-servo motor
×2
826 04
Male/Female Jumper Wires
×5
Male/Male Jumper Wires
×6

Apps and online services

About this project

Today, I will be explaining you about the MPU-6050 (Accelerometer+Gyro) sensor module and about controlling a Simple 2 axis Robotic Arm, made from Micro servo motors, by it.

What is an MPU-6050 sensor module?

The InvenSense MPU-6050 is a low-cost, highly accurate inertial measurement unit (IMU) with six degrees of freedom (DOF). IMUs can measure acceleration, inertia and a number of other parameters to allow you to determine their spatial position and velocity. It contains a MEMS 3-axis accelerometer and a MEMS 3-axis gyro in a single chip. It also has an onboard Digital Motion Processor (DMP) which processes complex 6-axis MotionFusion algorithms. This sensor module is also capable of accessing external magnetometers or other sensors through an auxiliary master IIC bus to provide complete 9-axis MotionFusion output. The MPU-6050 sensor module also consists of a temperature sensor but it's less accurate.

Examples where MPU-6050 may be used

  • Automotive industry - To deploy airbags, Vehicle roll handling
  • Game controllers - Wii remote/ Wiimote
  • Gimbal/ Camera stabilisation system
  • Hard drives
  • Personal Digital Assistants - Smartphones, tablets
  • Robotics
  • Unmanned Aerial Vehicles (UAV) - Drone, helicopters
  • Vehicle Navigation

Accelerometer

This device is used to measure acceleration, the rate of change of velocity of a particular object. An object travelling at constant speed will have zero acceleration.

The accelerometer in MPU-6050 is a triple-axis accelerometer which means it senses acceleration on the X, Y and Z axis.

Gyroscope

This is the other key component in the MPU-6050 and can measure the angular momentum or rotation around the X, Y and Z axis.

The MEMS gyroscope consists of three sensors, one per axis, that produce a voltage when they are rotated. This voltage is internally sampled using a 16-bit analog to digital converter.

Pinout

  • VCC - 3.3V DC power supply
  • GND - Ground
  • SCL - Serial Clock
  • SDA - Serial Data
  • XDA - Auxiliary Serial Data (Used when another sensor is connected to this module)
  • XCL - Auxiliary Serial Clock (Used when another sensor is connected to this module)
  • AD0 - I2C Address bit. Allows you to change the internal I2C address of the MPU-6050 module. It can be used if the module is conflicting with another I2C device, of if you wish to use two MPU-6050s on the same I2C bus.
  • INT - Interrupt output

Connecting MPU-6050 sensor module with Arduino

To interface your MPU-6050 with Arduino, you will be needing Jeff Rowberg's I2C Development library and the MPU-6050 library. To learn more about the libraries, please visit Jeff's website.

These libraries will be downloaded in.ZIP format and you can directly add these folders to your Arduino IDE.

  • Open your Arduino IDE.
  • Go to Sketch menu from the top menu bar.
  • Select Include library.
  • Select Add.ZIP library... option.
  • Navigate to the downloads folder or any other folder where you saved the.ZIP library and select it.
  • You will see a message displayed on the bottom of your Arduino IDE saying that the library was added to your list.
  • Repeat the steps to add your second library.

Now that you have added both essential libraries, try opening an example sketch and upload it to your Arduino microcontroller board. Experiment with your MPU-6050 sensor module by rotating them and observe the changes produced in the readings displayed in the Serial monitor.

Setup

Connections

*Note: Schematic can be found in the Schematic section.

MPU-6050 sensor module

  • VCC - 3.3V
  • GND - Ground
  • SDA - D20 (Arduino Mega 2560), A4 (Arduino Uno and Nano)
  • SCL - D21 (Arduino Mega 2560), A5 (Arduino Uno and Nano)
  • INT - D2

Micro servo motor (Roll)

  • S (Yellow/ Orange) - D9
  • + (Red) - 5V
  • - (Black/ Brown) - GND

Micro servo motor (Pitch)

  • S (Yellow/ Orange) - D10
  • + (Red) - 5V
  • - (Black/ Brown) - GND

Coding

As I already mentioned in above, you will be needing Jeff Rowberg's I2C Development library and the MPU-6050 library to interface your MPU-6050 sensor module with the Arduino microcontroller board. To learn more about the libraries, please visit Jeff's website.

Go to File menu from the top menu bar and select the MPU6050_DMP6 example sketch from the MPU6050 library. Upload it to your Arduino microcontroller board and observe the readings produced by the sensor module. Rotate the sensor module to notice the changes and identify the roll, pitch and yaw. Roll (longitudinal axis), pitch (transverse axis) and yaw (vertical axis) are aircraft principal axes.

For this project, we will be using only the roll and pitch measurements to control the simple robotic arm. The robotic arm is made using two micro servo motors so you will be needing the Servo library for your microcontroller to control the servo motor movement.

Use attach( ) function to declare the pins to which your servo motors are attached and set the initial position of your servo motors as zero within void setup( ). If you read the codes carefully, you would notice that the Roll measurements (in degrees) are indicated as ypr[2] * 180/M_PI.

Rotate the sensor module and observe the measurements produced to calculate the offsets and the range. Finally, you should use this range to map the measurements to the servo motor's position.

If anyone has any questions about the codes, please feel free to comment below or send me an email at arduinoprojectsbyr@gmail.com.

Please do not send me any email requesting the complete codes.

Code

MPU6050_DMP6Arduino
Example file from MPU6050 library
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v2.0)
// 6/21/2012 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//      2013-05-08 - added seamless Fastwire support
//                 - added note about gyro calibration
//      2012-06-21 - added note about Arduino 1.0.1 + Leonardo compatibility error
//      2012-06-20 - improved FIFO overflow handling and simplified read process
//      2012-06-19 - completely rearranged DMP initialization code and simplification
//      2012-06-13 - pull gyro and accel data from FIFO packet instead of reading directly
//      2012-06-09 - fix broken FIFO read sequence and change interrupt detection to RISING
//      2012-06-05 - add gravity-compensated initial reference frame acceleration output
//                 - add 3D math helper file to DMP6 example sketch
//                 - add Euler output and Yaw/Pitch/Roll output formats
//      2012-06-04 - remove accel offset clearing for better results (thanks Sungon Lee)
//      2012-06-01 - fixed gyro sensitivity to be 2000 deg/sec instead of 250
//      2012-05-30 - basic DMP initialization working

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

/* =========================================================================
   NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch
   depends on the MPU-6050's INT pin being connected to the Arduino's
   external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is
   digital I/O pin 2.
 * ========================================================================= */

/* =========================================================================
   NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error
   when using Serial.write(buf, len). The Teapot output uses this method.
   The solution requires a modification to the Arduino USBAPI.h file, which
   is fortunately simple, but annoying. This will be fixed in the next IDE
   release. For more info, see these links:

   http://arduino.cc/forum/index.php/topic,109987.0.html
   http://code.google.com/p/arduino/issues/detail?id=958
 * ========================================================================= */



// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
//#define OUTPUT_READABLE_QUATERNION

// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER

// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT



#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}



// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {
    // join I2C bus (I2Cdev library doesn't do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial.begin(115200);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();

    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                 // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

    // load and configure the DMP
    Serial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(0, dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial.print(F("DMP Initialization failed (code "));
        Serial.print(devStatus);
        Serial.println(F(")"));
    }

    // configure LED for output
    pinMode(LED_PIN, OUTPUT);
}



// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
    // if programming failed, don't try to do anything
    if (!dmpReady) return;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

        #ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print("quat\t");
            Serial.print(q.w);
            Serial.print("\t");
            Serial.print(q.x);
            Serial.print("\t");
            Serial.print(q.y);
            Serial.print("\t");
            Serial.println(q.z);
        #endif

        #ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print("euler\t");
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(euler[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            Serial.print("ypr\t");
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print("areal\t");
            Serial.print(aaReal.x);
            Serial.print("\t");
            Serial.print(aaReal.y);
            Serial.print("\t");
            Serial.println(aaReal.z);
        #endif

        #ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print("aworld\t");
            Serial.print(aaWorld.x);
            Serial.print("\t");
            Serial.print(aaWorld.y);
            Serial.print("\t");
            Serial.println(aaWorld.z);
        #endif
    
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif

        // blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}

Schematics

Schematic
Schematic 2609 2final ormxagblr2

Comments

Similar projects you might like

Hand Movement Controlled Robotic Arm

Project tutorial by Roland Pelayo

  • 9,588 views
  • 4 comments
  • 32 respects

PC Controlled Robotic Arm

Project tutorial by AhmedAzouz

  • 28,422 views
  • 16 comments
  • 108 respects

Nunchuk Controlled Robotic Arm (with Arduino)

Project tutorial by Igor Fonseca Albuquerque

  • 12,748 views
  • 6 comments
  • 54 respects

Controlling of Servo Motor with Arduino and MPU6050

Project tutorial by Hammad Iqbal

  • 15,190 views
  • 6 comments
  • 23 respects

Gesture Controlled Robotic Hand

Project tutorial by Rushabh Jain

  • 5,329 views
  • 1 comment
  • 10 respects
Add projectSign up / Login