Using Nokia 3310 84x48 LCD with Arduino © GPL3+

These 84 by 48 pixel LCDs are what you might have found in Nokia 3310. And what about using them in the Arduino projects?

  • 114 respects

Components and supplies

Necessary tools and machines

09507 01
Soldering iron (generic)

Apps and online services

Ide web
Arduino IDE
Microsoft Paint
Paint is all you need to make a graphic and scale the image in 84x48 scale.
BMP Converter
Convert the graphic you made or downloaded to .bmp extension.
LCD Assistant
For creating Bitmap graphics to 504-byte array of char.

About this project

The Nokia 5110 is a basic graphic LCD screen for lots of applications. It was originally intended to be used as a cell phone screen. This one is mounted on an easy to solder PCB.

It uses the PCD8544 controller, which is the same used in the Nokia 3310 LCD. The PCD8544 is a low power CMOS LCD controller/driver, designed to drive a graphic display of 48 rows and 84 columns. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD supply and bias voltages, resulting in a minimum of external components and low power consumption. The PCD8544 interfaces to microcontrollers through a serial bus interface.

Display Overview

The Pinout

To interface with and power the graphic LCD, there are two, parallel 8-pin headers above and below it.

Pinout Table :

Pin Number | Pin Label | Pin Function | Input/Output

1 | VCC | Positive power supply | Input

2 | GND | Ground | Input

3 | SCE | Chip select | Input

4 | RST | Reset | Input

5 | D/C | Mode select | Input

6 | DN(MOSI) | Serial data in | Input

7 | SCLK | Serial clock | Input

8 | LED | LED backlight supply | Input

Power Supplies

There are two different supply voltages on the LCD. The most important supply voltage – VCC – supplies the logic circuits inside the LCD. The datasheet states this should be between 2.7 and 3.3V. In a normal state, the LCD will consume about 6 or 7mA.

The second voltage supply is required for the LED backlights on the board. If you were to remove the LCD from the PCB (not that you should, or need to), you’d see that these are backlights in their simplest form – four white LEDs spaced around the edges of the board. You may also notice that there aren’t any current limiting resistors.

This means you have to be careful with this voltage supply. Either stick a current limiting resistor in series with the ‘LED’ pin, or limit the supply to 3.3 V max. The LEDs can pull a lot of current! With nothing to limit them, they’ll pull about 100mA at 3.3 V.

The Control Interface

Built into this LCD is a Philips PCD8544 display controller, which converts the massive parallel interface of the raw LCD to a more convenient serial one. The PCD8544 is controlled through a synchronous serial interface similar to SPI. There are clock (SCLK) and data (DN) input lines, and an active-low chip select (SCE) input as well.

On top of those three serial lines, there is another input – D/C – which tells the display whether the data it’s receiving is a command or displayable data.

For a list of commands, check out the “Instructions” section of the PCD8544 datasheet (page 11). There are instructions to enable clearing of the display, inverting the pixels, powering it down, and more.

Hardware Assembly & Hookup


To “assemble” the LCD, you’ll need to solder something to one (or both) of the 8-pin headers. There are plenty of options available here. To make the LCD breadboard-compatible, straight or right-angle male headers can be soldered in.

Otherwise, wires or other connectors can be soldered to the display pins.


For the data transmission pins – SCLK and DN(MOSI) – we’ll use the Arduino’s hardware SPI pins, which will help to achieve a faster data transfer. The chip select (SCE), reset (RST), and a data/command (D/C) pins can be connected to any digital I/O pin. Finally, the LED pin should be connected to a PWM-capable Arduino pin, so we can dim the backlight as we please.

Unfortunately, the LCD has a maximum input voltage of 3.6V, so we can’t hook up a standard 5V Arduino straight to it. We need to shift levels. This leads us to a few options for hookup:

  • Direct Connect

The easiest hookup is to connect the Arduino pins directly to the LCD.

This setup can work for 5V Arduino’s, ignoring the 3.6V limit on the VCC and data lines. It works. But it may decrease your LCD’s life.

  • Limiting Resistors

Sticking resistors in-line with the data signals is a cheap, and easy way to add some protection to the 3.3V lines. If you have an Arduino Uno (or similar 5V ‘duino) and some 10kΩ and 1kΩ resistors lying around, try this:

The pins are connected the same as in the above example, however each signal has an inline resistor. There are 10kΩ resistors with the SCLK, DN, D/C, and RST pins. A 1kΩ resistor with SCE. And the 330Ω resistor remains between pin 9 and the LED pin.

  • Level Converters

If you can spend some more money, then, a third option for hookup is to use actual level converters to switch between 5V and 3.3V. Boards like the Bi-Directional Logic Level Converter is perfect for something like this.

Unfortunately, the LCD has five 3.3V signal inputs and the level shifters only have four channels. If you want to keep the circuit to a single shifter, you can permanently tie RST high (through a 10kΩ resistors), and run the other signals through the shifter. You lose remote reset capability, but the rest of the control remains.

Example Code

With the hardware all hooked up, we’re ready to upload a sketch and start drawing on the LCD!

Once uploaded to your Arduino, the sketch will begin by running the demo – a set of basic animations and graphics functions. To begin, we’ll draw some random pixels on the screen (“It’s full of stars…”). Then we’ll move on to examples of drawing lines, rectangles, and circles. Throughout there are examples of drawing characters and strings. Finally the demo closes out with an homage to a monochrome comic which seems a perfect fit for this little monochrome LCD.

This is a demo of drawing bitmaps on the screen, which is one of the more rewarding tasks we can accomplish with the ‘duino/LCD combo.

After the demo runs its course, the sketch will enter into a serial echo mode. Open the serial monitor (set the baud rate to 9600 bps), and type stuff over to the Arduino. It should start printing everything you send it onto the LCD.

Drawing Bitmaps

If the last demo has you chomping at the bit to design your own 84x48 bitmaps and display them, continue reading through this project. I’ll show you how to scale and import a bitmap, then compile it into your Arduino code and send it to the LCD, so you can have your own, silly graphic.

Find/Make/Modify a Bitmap

To begin, find a bitmap image that you’d like to print to the LCD. 84x48 monochrome pixels doesn’t give you a lot of room, but you can still get some fun stuff on there. Here are a few examples:

After you’ve picked an image, you’ll need to massage it to make it both monochrome (2-bit color) and 84 x 48 pixels. Most standard image editors can help with this. For Windows users, Paint is all you need to scale the image. Then save it as a monochrome bitmap.

Convert Bitmap to Array

The next step is converting that regular image file to a 504-byte array of char.There are a number of programs that can help with this around the web. We recommend LCD Assistant.

To load up an image in LCD Assistant, go to File > Load Image. A preview of the image should open up, make sure it’s the right size – 84 pixels wide, 48 pixels tall. Also make sure the Byte orientation is set to Vertical and the Size endianness is set to Little. The rest of the default settings (8 pixels/byte, etc.) should already be set correctly:

Then go to File > Save output to generate a temporary text file. Open that text file to have a look at your shiny new array. You’ll need to modify the type of the array to be just a char. Also make sure the array has the proper naming conventions (no dashes, don’t start with a number, etc.).

Import the sketch and draw

With that array created, copy the entire table over to your Arduino sketch.

// ...LCD definitions, variables, and bitmap array defined above. 
void setup() 
 lcdBegin(); // This will setup our pins, and initialize the LCD 
 setContrast(60); // Good values range from 40-60 
 setBitmap(flameBitmap); // flameBitmap should be replaced with the name of your BMP array 
 updateDisplay();  // Update the display to make the array show up. 
void loop() 
// LCD control and graphics functions defined below... 

Fun stuff! Now you can overlay text, or draw on on your bitmap. You can even try importing multiple graphics to create animations!

Please respect the project so that I can get more reputation points for getting some more electronic stuff.


52570cf9757b7fa70c8b4567 bx1qd2ht4w


Arduino SketchC/C++
Copy the the array and paste it in the code here. Then, click on upload!
/* Nokia 5100 LCD Example Code

  This all-inclusive sketch will show off a series of graphics
  functions, like drawing lines, circles, squares, and text. Then
  it'll go into serial monitor echo mode, where you can type
  text into the serial monitor, and it'll be displayed on the

  This stuff could all be put into a library, but we wanted to
  leave it all in one sketch to keep it as transparent as possible.

  Hardware: (Note most of these pins can be swapped)
    Graphic LCD Pin ---------- Arduino Pin
       1-VCC       ----------------  5V
       2-GND       ----------------  GND
       3-SCE       ----------------  7
       4-RST       ----------------  6
       5-D/C       ----------------  5
       6-DN(MOSI)  ----------------  11
       7-SCLK      ----------------  13
       8-LED       - 330 Ohm res --  9
   The SCLK, DN(MOSI), must remain where they are, but the other 
   pins can be swapped. The LED pin should remain a PWM-capable
   pin. Don't forget to stick a current-limiting resistor in line
   between the LCD's LED pin and Arduino pin 9!

#include <SPI.h>
#include <LCD_Functions.h>

/* This array is the same size as the displayMap. We'll use it
as an example of how to draw a bitmap. xkcd comic transposing
makes for an excellent display application.
For reference, see: */
static const char xkcdSandwich[504] PROGMEM = {
0xFF, 0x8D, 0x9F, 0x13, 0x13, 0xF3, 0x01, 0x01, 0xF9, 0xF9, 0x01, 0x81, 0xF9, 0xF9, 0x01, 0xF1,
0xF9, 0x09, 0x09, 0xFF, 0xFF, 0xF1, 0xF9, 0x09, 0x09, 0xF9, 0xF1, 0x01, 0x01, 0x01, 0x01, 0x01,
0xF9, 0xF9, 0x09, 0xF9, 0x09, 0xF9, 0xF1, 0x01, 0xC1, 0xE9, 0x29, 0x29, 0xF9, 0xF1, 0x01, 0xFF,
0xFF, 0x71, 0xD9, 0x01, 0x01, 0xF1, 0xF9, 0x29, 0x29, 0xB9, 0xB1, 0x01, 0x01, 0x01, 0xF1, 0xF1,
0x11, 0xF1, 0xF1, 0xF1, 0xE1, 0x01, 0xE1, 0xF1, 0x51, 0x51, 0x71, 0x61, 0x01, 0x01, 0xC1, 0xF1,
0x31, 0x31, 0xF1, 0xFF, 0xFF, 0x00, 0x01, 0x01, 0x01, 0x01, 0x60, 0xE0, 0xA0, 0x01, 0x01, 0x81,
0xE1, 0x61, 0x60, 0xC0, 0x01, 0xE1, 0xE1, 0x21, 0x21, 0xE0, 0xC1, 0x01, 0xC1, 0xE1, 0x20, 0x20,
0xFC, 0xFC, 0xE0, 0xE0, 0xC1, 0xE1, 0xE0, 0xC1, 0xE0, 0xE1, 0x01, 0xFC, 0xFC, 0x21, 0x21, 0xE1,
0xC1, 0xE5, 0xE4, 0x01, 0xC1, 0xE0, 0x20, 0x21, 0x20, 0x00, 0x01, 0xFD, 0xFD, 0x21, 0x20, 0xE0,
0x00, 0x00, 0x01, 0x01, 0xC0, 0x61, 0x31, 0x31, 0x21, 0x20, 0xC0, 0x81, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03, 0x02,
0x03, 0x01, 0x00, 0x01, 0x03, 0xF2, 0x1A, 0x0B, 0x08, 0x0B, 0x1B, 0x10, 0x60, 0xE3, 0x03, 0x00,
0x01, 0x03, 0x02, 0x02, 0x03, 0x03, 0x00, 0x03, 0x03, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x03,
0x03, 0x00, 0x00, 0x03, 0x03, 0x03, 0x03, 0x00, 0x01, 0x03, 0x02, 0x02, 0x03, 0x01, 0x00, 0x03,
0x03, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x3E, 0x63, 0x80, 0x80, 0x80, 0x80, 0x60, 0x3F, 0x07,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xFE, 0x01, 0x01, 0x01, 0x02, 0x03, 0x3E, 0xE8, 0xF8, 0xF0, 0xD0, 0x90,
0x18, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x38, 0xFF,
0x0C, 0x38, 0xE0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF,
0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x33,
0x5F, 0x8F, 0x84, 0x05, 0x07, 0x06, 0x0C, 0x0E, 0x0E, 0x0C, 0x14, 0x34, 0x68, 0x88, 0xD8, 0x70,
0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x10, 0x10, 0x10, 0xF0, 0xE0, 0x00, 0xF0, 0xF0, 0x00, 0x80,
0x80, 0x00, 0x00, 0x80, 0x80, 0x80, 0x80, 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x20, 0x38,
0x0E, 0x01, 0xC0, 0x3F, 0xE0, 0x00, 0x00, 0x03, 0x0E, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xFF, 0xFF, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0xB6, 0xED, 0xC0, 0xC0,
0xC0, 0xE0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA1, 0xA1, 0xA1, 0xA1, 0xA1, 0xA1, 0xA1, 0xE1, 0xE1, 0xC1,
0xEF, 0xBB, 0x83, 0x86, 0x88, 0xB0, 0x80, 0x80, 0x80, 0x8F, 0x90, 0x90, 0x90, 0x9F, 0x8F, 0x80,
0x9F, 0x9F, 0x87, 0x8D, 0x98, 0x80, 0x8C, 0x9E, 0x92, 0x92, 0x9F, 0xC0, 0xC7, 0xFF, 0xB8, 0x8F,
0x80, 0x90, 0x90, 0xC0, 0xF0, 0x8E, 0x81, 0x80, 0x81, 0x8F, 0xB8, 0xE0, 0x80, 0x80, 0x80, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0xFF, 

void setup()

  lcdBegin(); // This will setup our pins, and initialize the LCD
  updateDisplay(); // with displayMap untouched, SFE logo
  setContrast(40); // Good values range from 40-60

  lcdFunTime(); // Runs a 30-second demo of graphics functions

  // Wait for serial to come in, then clear display and go to echo
  while (!Serial.available())

// Loop turns the display into a local serial monitor echo.
// Type to the Arduino from the serial monitor, and it'll echo
// what you type on the display. Type ~ to clear the display.
void loop()
  static int cursorX = 0;
  static int cursorY = 0;

  if (Serial.available())
    char c =;

    switch (c)
    case '\n': // New line
      cursorY += 8;
    case '\r': // Return feed
      cursorX = 0;
    case '~': // Use ~ to clear the screen.
      cursorX = 0; // reset the cursor
      cursorY = 0;
      setChar(c, cursorX, cursorY, BLACK);
      cursorX += 6; // Increment cursor
    // Manage cursor
    if (cursorX >= (LCD_WIDTH - 4)) 
    { // If the next char will be off screen...
      cursorX = 0; // ... reset x to 0...
      cursorY += 8; // ...and increment to next line.
      if (cursorY >= (LCD_HEIGHT - 7))
      { // If the next line takes us off screen...
        cursorY = 0; // ...go back to the top.

/* This function serves as a fun demo of the graphics driver
functions below. */
void lcdFunTime()
  clearDisplay(WHITE); // Begin by clearing the display

  /* setPixel Example */
  const int pixelCount = 100;
  for (int i=0; i<pixelCount; i++)
    // setPixel takes 2 to 3 parameters. The first two params
    // are x and y variables. The third optional variable is
    // a "color" boolean. 1 for black, 0 for white.
    // setPixel() with two variables will set the pixel with
    // the color set to black.
    // clearPixel() will call setPixel with with color set to
    // white.
    setPixel(random(0, LCD_WIDTH), random(0, LCD_HEIGHT));
    // After drawing something, we must call updateDisplay()
    // to actually make the display draw something new.
  setStr("full of stars", 0, LCD_HEIGHT-8, BLACK);
  // Seizure time!!! Err...demoing invertDisplay()
  for (int i=0; i<5; i++)
    invertDisplay(); // This will swap all bits in our display
    invertDisplay(); // This will get us back to where we started

  /* setLine Example */
  clearDisplay(WHITE); // Start fresh
  int x0 = LCD_WIDTH/2;
  int y0 = LCD_HEIGHT/2;
  for (float i=0; i<2*PI; i+=PI/8)
    // Time to whip out some maths:
    const int lineLength = 24;
    int x1 = x0 + lineLength * sin(i);
    int y1 = y0 + lineLength * cos(i);

    // setLine(x0, y0, x1, y1, bw) takes five variables. The
    // first four are coordinates for the start and end of the 
    // line. The last variable is the color (1=black, 0=white).
    setLine(x0, y0, x1, y1, BLACK);
  // Demo some backlight tuning
  for (int j=0; j<2; j++)
    for (int i=255; i>=0; i-=5)
      analogWrite(blPin, i); // blPin is ocnnected to BL LED
    for (int i=0; i<256; i+=5)
      analogWrite(blPin, i);

  /* setRect Example */
  clearDisplay(WHITE); // Start fresh

  // setRect takes six parameters (x0, y0, x1, y0, fill, bw)
  // x0, y0, x1, and y0 are the two diagonal corner coordinates
  // fill is a boolean, which determines if the rectangle is
  // filled in. bw determines the color 0=white, 1=black.
  for (int x=0; x<LCD_WIDTH; x+=8)
  { // Swipe right black
    setRect(0, 0, x, LCD_HEIGHT, 1, BLACK);
  for (int x=0; x<LCD_WIDTH; x+=8)
  { // Swipe right white
    setRect(0, 0, x, LCD_HEIGHT, 1, WHITE);
  for (int x=0; x<12; x++)
  { // Shutter swipe
    setRect(0, 0, x, LCD_HEIGHT, 1, 1);
    setRect(11, 0, x+12, LCD_HEIGHT, 1, BLACK);
    setRect(23, 0, x+24, LCD_HEIGHT, 1, BLACK);
    setRect(35, 0, x+36, LCD_HEIGHT, 1, BLACK);
    setRect(47, 0, x+48, LCD_HEIGHT, 1, BLACK);
    setRect(59, 0, x+60, LCD_HEIGHT, 1, BLACK);
    setRect(71, 0, x+72, LCD_HEIGHT, 1, BLACK);
  // 3 Dee!
  setRect(25, 10, 45, 30, 0, WHITE);
  setRect(35, 20, 55, 40, 0, WHITE);
  setLine(25, 10, 35, 20, WHITE);
  setLine(45, 30, 55, 40, WHITE);
  setLine(25, 30, 35, 40, WHITE);
  setLine(45, 10, 55, 20, WHITE);

  /* setCircle Example */
  // setCircle takes 5 parameters -- x0, y0, radius, bw, and
  // lineThickness. x0 and y0 are the center coords of the circ.
  // radius is the...radius. bw is the color (0=white, 1=black)
  // lineThickness is the line width of the circle, 1 = smallest
  // thickness moves in towards center.
  for (int i=0; i<20; i++)
    int x = random(0, LCD_WIDTH);
    int y = random(0, LCD_HEIGHT);

    setCircle(x, y, i, BLACK, 1);

  /* setChar & setStr Example */
  // setStr takes 4 parameters: an array of characters to print,
  // x and y coordinates for the top-left corner. And a color
  setStr("Modern Art", 0, 10, WHITE);

  /* setBitmap Example */
  // setBitmap takes one parameter, an array of the same size
  // as our screen.


Similar projects you might like

A Sudoku Solver's Robot

Project tutorial by msana

  • 16 respects

Jrobot - Android and Arduino-Based Global Control Robot Car

Project showcase by joechen

  • 11 respects

Raspberry Pi - Powered Candy Dispenser

Project tutorial by Arduino “having11” Guy

  • 9 respects


Project in progress by alfred333

  • 5 respects

New Electronic Music Instrument Design

Project showcase by cpeckmusic

  • 7 respects
Add projectSign up / Login